Jackknife resampling
Usage
# S4 method for class 'FLQuant'
jackknife(object, dim = "year", na.rm = TRUE)
# S4 method for class 'FLQuants'
jackknife(object, ...)
# S4 method for class 'FLModel'
jackknife(object, slot)Details
The jackknife method sets up objects ready for jackknifing, i.e. to
systematically recompute a given statistic leaving out one observation at a
time. From this new set of "observations" for the statistic, estimates for
the bias and variance of the statstic can be calculated.
Input objects cannot have length > 1 along the iter dimension, and
the main slot in the resulting object will have as many iters as the
number of elements in the original object that are not NA.
Examples
flq <- FLQuant(1:8)
flj <- jackknife(flq)
iters(flj)
#> -- iter: 1
#> 1 2 3 4 5 6 7 8
#> NA 2 3 4 5 6 7 8
#> -- iter: 2
#> 1 2 3 4 5 6 7 8
#> 1 NA 3 4 5 6 7 8
#> -- iter: 3
#> 1 2 3 4 5 6 7 8
#> 1 2 NA 4 5 6 7 8
#> -- iter: 4
#> 1 2 3 4 5 6 7 8
#> 1 2 3 NA 5 6 7 8
#> -- iter: 5
#> 1 2 3 4 5 6 7 8
#> 1 2 3 4 NA 6 7 8
#> -- iter: 6
#> 1 2 3 4 5 6 7 8
#> 1 2 3 4 5 NA 7 8
#> -- iter: 7
#> 1 2 3 4 5 6 7 8
#> 1 2 3 4 5 6 NA 8
#> -- iter: 8
#> 1 2 3 4 5 6 7 8
#> 1 2 3 4 5 6 7 NA
#>
#> units: NA
#> NULL
